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AND MAXIMUM UNBIASED SIMULATED  

 LIKELIHOOD ESTIMATION 
 

BY GREGORY M. DUNCAN1

The paper solves a longstanding problem in simulation: How to 
unbiasedly estimate analytic functions of expectations when the 
expectations must be simulated. It then applies these to Simulated 
Maximum Likelihood (SML) estimation.  The results include unbiased 
estimation of finite degree polynomials and other analytic functions, 
unbiased simulation of the score and likelihood, and the asymptotic 
properties of SML using these simulators. The motivating application is 
estimation in the mixed logit model. There are some older related results 
spread throughout the non-parametric and sequential estimation literatures, 
these seem unknown to both simulation researchers and practitioners, so 
they are collected here and presented, in context, with the new results. 

 

 

0. INTRODUCTION 

A LONGSTANDING PROBLEM in estimation by Simulated Maximum Likelihood (SML) has 

been the apparent impossibility of finding unbiased estimators of the log-likelihood and 

score when the likelihood involves expectations that must be simulated.2 This was 

thought to be the case since the usual method of estimation, substituting the sample mean 

for the expectation, give a bias; non-linear functions of averages are usually not unbiased 

estimates of the function applied to the expectation of the average, that is, 

( )( ) ( )( )E f X f E X≠  unless f is linear (affine). And because the usual solution by 

Taylor's expansions, either depended on unknown parameters, and/or corrected only part 

of the error, i.e. up to the first or second order. In the first part of this paper, we solve the 

problem, for analytic f , by finding another function ( )1* , , If X X  having the property 

that ( )( ) ( )( )1* , , I 1E f X X f E X= . Specifically, we develop unbiased simulators of 

                                                 
1 Thanks go to members of the Econometrics Workshops at the University of California, Berkeley and 
Washington State University. I am grateful for comments from Scott Cardell, George Judge, Ron 
Mittlehammer, and Paul Ruud.  Special thanks go to Kenneth Train and Jim Powell whose inputs have 
really improved and changed the paper. 
2 See Gouriéroux and Monfort (1996) or Lee (1996), the problem is also mentioned in Hajivassiliou and 
McFadden (1998). 
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analytic functions of expectations where the expectations themselves must be simulated, 

regardless the function f except it be analytic and regardless the simulation distribution.  

In the second part, we show the consistency and asymptotic normality of Simulated 

Maximum Likelihood estimators based on these simulators.  

 As our goal is estimating analytic functions of expectations where the 

expectations themselves must be simulated, we begin by recalling that all real analytic 

functions, such as the logarithm, have power series expansions of the form 

(1)  ( ) ( )00

i
ii

p pλ∞

=
= −∑ p

which converges absolutely on a set ( ) { }0|C R p p p R= − < . ( )C R  is called the circle 

of convergence and R the radius of convergence. The expansion may or may not 

converge on the boundary of its circle of convergence. The simplest analytic functions 

are polynomials, analytic functions with terminating expansions.  Our first results apply 

to polynomials and polynomial approximations to general analytic functions (henceforth 

meaning those with non-terminating expansions). Let ( ) ( )00

I i
ii

p pλ
=

= − p∑ be a 

polynomial where the iλ  and the expansion point 0p  are known, but the value of p must 

be simulated. Consider I independent and identically distributed simulators simulants, 

{ }1, Is s , where ( ) 0iE s p p= − .  The uniformly minimum variance unbiased U-statistic 

for estimating the parameters ( )( ) ( )1 0

j j
j E s p p j Iγ = = − ≤ is given by 

(2) ( ) ( ) ( )
11

, /
ii

i r rr r
U s I s s C I i

< <
= ∑ ,

)

.3

Our first result, obvious given the setup, is that ( ) (0 0
, ,I

i ii
s I U s Iλ λ

=
= + ∑  is an 

unbiased and often efficient estimator of ( )p . 

 Since general analytic functions can be approximated by finite degree 

polynomials, this result implies that the best polynomial approximants to analytic 

functions may be unbiasedly estimated as well; though at the cost of an approximation 

error that may depend upon the unknown value of p.  One can always increase the degree 

                                                 
)3 ( ) ( )(, !/ ! !C I i I I i i= − is the binomial coefficient. 
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of the approximating polynomial but this only goes so far. The problem is that with a 

fixed number of trials, the only way to obtain an exactly unbiased estimator of a general 

analytic function is to use an infinite number of trials or simulants. 

The first major result of the paper, and the key result upon which most of the 

substantive results depend is a technical lemma that overcomes this problem by randomly 

truncating a power series.  This works because the expected value of a randomly 

truncated non-terminating series will be a non-terminating power series in 0p p− .  

Specifically, if I is a random integer with a finite expectation, cumulative distribution 

function ( ) [ ]0
0, ,i

j
F i P i i

=
= =∑ ∞ , and survival function ( ) ( )1 0,G i F i i ,= − = ∞

),

 

and if then using the law of iterated expectations gives ( ) (* 0 0
, I

i ii
s I U s Iλ λ

=
= + ∑

( ) ( )( )( ) [ ]* 00 0
, I

i iI i
E s I E U s I I P Iλ λ∞

= =
= +∑ ∑ , | ; freely exchanging sums and integrals 

and rearranging double sums gives 

(3) ( ) ( ) ( )* 00

i
ii

E p G i pλ∞

=
= −∑ p

),

. 

  The appearance of in (3) reveals the surprising result that the series we want to 

randomly truncate will not be the analytic expansion of the desired function.  However 

finding the correct one is a simple exercise in the method of undetermined coefficients, 

we simply find a power series 

( )G i

( ) (0 0
, I

i ii
s I U s Iβ β

=
= + ∑ , where I is random as above 

such that ( )( ) ( ),E s I p=  or . ( ) ( ) ( )0 00 0

i i
i ii i
G i p p p pβ λ∞ ∞

= =
− = −∑ ∑

So our second major result is that choosing ( )/i i G iβ λ=  and truncating using a 

stopping time I gives and unbiased estimator. That is, 

(4)   ( ) ( )( ) ( )0 0
, /I

i ii
s I G i U s Iλ λ

=
= + ∑ ,

                                                

is an unbiased estimator of (1).  In showing this we will encounter some nasty technical 

but substantive problems4 in coming to this result, we will find that the stopping time I 

 
4 Kenneth Train noted that in an early version of the paper, the method completely broke down if I was 
Geometric(w) and p<w.  This meant a good estimate of p was required.  This led to finding how and why it 
broke down and how to avoid knowing p in advance, which, in turn, led to developing the special class of 
survival functions used here. 
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must have a finite expectation, must have infinite range, but must have the property that 

for some finite J and all j>J and all p in , ( )( )C R ( )0 /j .jp p G j R− <

1

 This latter 

inequality must hold for all p so it is non trivial to satisfy.  We will develop a class of 

easily simulated random variables that do satisfy the conditions.  This class is defined by 

the survival function . ( ) , 0, , , 0 1, 0iG i B i B
α

α= = ∞ < < < <

 We then turn our attention to estimation problems that require simulation.  We 

will apply the results to construct estimators of the score that are unbiased and whose 

implied simulation residual processes are stochastically equicontinuous5.  This program is 

dictated by the desire to find unbiased simulated scores that fit directly into the 

framework of Hajivassiliou and McFadden (1998) (HM).  Our next results are then that 

when the expectation ( )p p ϑ= depends on ϑ , there are three possible unbiased 

estimators of the score, and that when the simulants are stochastically equicontinuous, the 

simulation residual process will be as well.   

First, when the simulants, ( ),i is S ω ϑ= depend differentiably on ϑ , and, in 

addition on a underlying random element ω , then under regularity conditions on the data 

generation process (not the simulation process), the formal gradient of ( )( )p ϑ , 

is an unbiased estimator of the 

score

( ) ( )( ) (0
, /I

i ii
s I G i U s Iϑ λ

=
∇ = ∇∑ ),ϑ

pϑ( )( ) ( )( ) ( )1
00

i
ii

p i p pϑ ϑ λ ϑ ϑ
−∞

=
∇ = − ∇∑  moreover, the simulation residual 

process it implies is stochastically equicontinuous.  Second, if the density of the 

underlying simulation process, ( );h z ϑ is logarithmically differentiable in ϑ , then the 

estimator 

(5) ( )( ) ( )( )
( ) ( )( ) ( )( )

*

0

, ln ,

, / ln ,

I

I
i i Ii

S z I h z

U z I G i h z

ϑ ϑ

ϑ

ϑ

λ ϑ
=

= ⋅ ∇

= ∇∑
 

is unbiased.   In words, the simple product of the unbiased simulator of ( )( p )ϑ and the 

score of the log-likelihood of the simulation process is an unbiased simulator of the score 

                                                 
5 These terms are defined in HM and are repeated below. 
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and is stochastically equicontinuous in the sense discussed above.  Finally, under only the 

conditions of unbiased and stochastically equicontinuity of the simulated log-likelihood, 

the numerical gradient with a fixed step size is unbiased and stochastically 

equicontinuous. 

 These results are then folded into a restated form of the HM results that says these 

estimators can be used directly in the HM framework with no further adjustment.  In the 

final section we examine computational issues. We present fast algorithms for calculating 

the all the required U-statistics and their gradients recursively.  We also develop the 

aforementioned class of survival functions and show how to simulate the stopping times.  

Along the way throughout the paper other results of more or less interest are presented 

particularly some results for the binomial case that have some independent interest. 

 

1. UNBIASED SIMULATORS FOR ANALYTIC FUNCTIONS 

Finding unbiased estimators of the log-likelihood and its gradient when the 

probabilities are simulated mixed logits or multinomial probits motivated this research 

and the conditions of this paper are developed with those in mind.  The following 

example will continue throughout the paper and will serve to illustrate many of the ideas 

developed herein. 

1.1.    Example: Bernoulli and General Simulants in the Random Coefficient Logit 

with Sign Constraints6 

 

Consider a standard logit model with J alternatives where the coefficients are 

continuous functions of multivariate normals.  Let 

( )
( ),

TU W Z

Z Gaussian

γ ε

µ

= +

Ω∼  

and define .( )vech
µ

ϑ
⎛ ⎞

= ⎜ Ω⎝ ⎠
⎟

                                                

7  U is an unobserved vector of utilities.  The ith row of W is 

 
6 See Cardell and Dunbar (1980) or Train (2002)) 
7 See Ruud(2000) for a complete definition of the vech operator; basically, it is the lower triangle of a 
matrix ordered lexicographically in a vector. 
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the vector of characteristics for alternative i.  The ε  is a vector of independent and 

identically distributed Extreme Value (0,1) errors is statistically independent of Z. 

( )Zγ  is a vector valued function that depends continuously on Ζ; this allows imposition 

of sign restrictions on the coefficients, i.e. ( )exp kZ−  is always negative.  Each alternative 

has a utility Ui and alternative i is chosen if .  Without loss of generality, 

label alternatives so that alternative 1 is the one chosen. 

i jU U i j> ∀ ≠

A Bernoulli simulant δ is defined as follows let 

( ){ }1, | , 2, ,jA Z U U j Jε= > = . 

and draw ( ), Zε according with the distributions above, with fixed ϑ , and set 

(6) ( )1 if  ,
0 otherwise

Z Aδ ε=

=

∈ .                                                           

Then with the probability  

(7) [ ] ( ) ( ) ( ){ } ( )1 1
Pr 1 | exp / exp ; ,

p

JT T
jj

R

W p W Z W Z Z dδ ϑ γ γ φ µ
=

= = = Ω∑∫ Z                                    

The simulant, δ , is not differentiable in ϑ .  

For a general simulant, s, draw Z, only, according with the distribution above with fixed 

ϑ , and define 

(8)  ( ) ( ) ( )1 1
exp / expJT T

jj
s Z W Z W Zγ γ

=
= ∑

In this case, too, ( ) ( )E s p ϑ= , however, this simulant does not depend explicitly on ϑ .  

However, it can often be written in a second form where ϑ  appears.  Let ( )~ 0,Z N I  

and 1/ 2K = Ω  is upper triangular then  

(9) ( ) ( )1 1
exp / expJT T

jj
s W KZ W Kγ µ γ µ

=
= + + Z∑  

 

1.2.  Unbiased Polynomials in the Bernoulli Case  

 

The Bernoulli simulator of a probability ( );
z A

p h z dzϑ
∈

= ∫  is the proportion of times 
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random variables Z drawn independently from h fall in A.  Let  

 

1 if
0 otherwise

x Aδ = ∈
= , 

then 
1

I

i
i

B δ
=

= ∑ , the number of times  that Z falls in A, is a Binomial(I,p) random variable.  

Generally, the expectation ( ) ( )( ) ( )( )'
[ ] 1 1i i

E B B B i E Bµ = − − + = 8 is called the ith 

factorial moment of B. For a Binomial(I,p), ( )'
[ ] ,r
r r

p I rµ = I≤                               

or, more usefully, ( ) ( )( ) ( )'
[ ]/ / ,r
rr r r

E B I I p rµ I= = ≤ . Let ( ) 0

I i
ii

p pλ
=

= ∑ be a 

degree I polynomial and ( ) ( ) ( )( )0 0
/I

i i ii
B B Iλ λ

=
= + ∑  be its estimator. This equation 

is nothing more than substituting ( ) ( )/
i

B I
i

i

 for each power of p.  Note if B is less than j, 

the subsequent terms are all zero so we can redefine  making B the upper limit of 

indices in the sum.  Our estimator becomes ( ) ( ) ( )0 0
/B

i ii
B B Iλ λ

=
= + ∑ .  And so,  

PROPOSITION 1: Let B be Binomial(I,p), then ( )( ) 0

I i
ii

E B pλ
=

= ∑ . 

PROOF:  From the theory of the binomial (Johnson, Kotz, Kemp (1993)),  

( )'
[ ] ,r
r r

p I rµ = I≤

                                                

.  Substituting gives the result. 

Q.E.D. 

 

By the Lehmann-Scheffe` Theorem, these estimators are efficient because they are 

unbiased estimators of the polynomials and are functions of the complete sufficient 

statistic Z. To increase efficiency, we simply increase I. 

 

1.3. A First Application to Logarithms 

 

In this section we develop an approximate method for estimating the log-probability 

or likelihood.  It will serve as an introduction to the expansion method required for 
 

8 We shall use the notation ( ) ( ) ( )1
r

B B B B r= − − + 1 for the falling factorial symbol. 
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exactly unbiased methods developed below. The logarithm has the analytic expansion  

(10) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 00 0
ln ln 1 / ln /i i ii i

i i
p p p p ip p p p ip∞ ∞

= =
= + − − = − −∑ ∑ 0  

with circle of convergence { }0| 0 1 2C p p= < ≤ 9. For p  moderate small to unity, the 

series converges quite rapidly.  If we truncate the series at I terms, we have a finite 

polynomial to which Theorem 1 applies. Its bias is a completely non-statistical 

approximation error dictated solely by the degree of the polynomial approximation.  Let 

B~Binomial(I,1-p) then the truncated estimator of log(p) is given 

by ( ) ( ) ( )( )0
/ .B

i ii
B B i I

=
= −∑  

COROLLARY 1:  Let B be Binomial(I ,1-p), then ( )B  is an unbiased estimate of the 

truncated logarithm ( )0
1 /B j

j
p j

=
− −∑ . 

The bias in estimating the logarithm using the truncated logarithm depends on both 

the degree I and the probability p.  The bias decreases as I increases or as p decreases.  

The user can pick I whereas p is unknown. For probabilities larger than .25, simply 

truncating the polynomial expansion at 10 terms works well; but smaller probabilities 

require ever increasing numbers of terms and trials, around 30000 trials are required for 

probabilities around .0001 to obtain relative errors less than .001.   

One can greatly reduce the required number of moments and therefore observations 

by finding better fitting polynomials, ones whose coefficients are not the Taylor 

coefficients; for example a minimax approximation to log(p) that minimized the relative 

error over p in [.001, .999] reduced the number of trials needed from up to 30000 to no 

more than 16 with a relative error of approximately 4.8% .10    If the p is outside this 

range, the approximation is defined but may have larger relative errors. Larger ranges 

lead to larger errors and eventually a complete breakdown of the minimax algorithm. A 

minimax approximation is easily computed using Mathematica.   For the truncated series 

approximations, the error increases as the probability decreases; for the minimax, the 

                                                 
9 The expansion converges at one endpoint, p=2p0 but not the other. 
10 See Judd (2001) p212 for example. 
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worst relative errors are spread periodically over the domain. The approximately five 

percent relative error is about the best that can be done with a polynomial that is 

numerically stable.  

 

1.4. Unbiased Analytic Functions of Probabilities in the Bernoulli Case 

 

In the Bernoulli case, to obtain unbiased estimates for any function ( )p  analytic on 

(0,1], we use an inverse binomial sampling scheme and work with a slightly different 

expansion than we developed for the polynomial.  Referring to the logarithm example, 

the problem with fixed sample estimators for analytic functions with non-terminating 

series representations is that they require either an infinite number of observations or 

acceptance of an approximation error that depends on the unknown probability.   

For Bernoulli simulators, we handle the problem with the following change.  Instead 

of taking a fixed sample, we sample until the first success is recorded.  The random 

variable I that is the number of trials before the success occurs then has a Geometric(p) 

distribution.  To derive our estimator, let us first assume that an unbiased estimator ( )I  

of ( )p exists.  If so, by definition of unbiasedness                           

(11) ( )( ) ( )E I p=   

while by definition of an expectation of a function of a Geometric(p) random variable, 

(12) ( )( ) ( ) ( )0
1 i

i
E I i p∞

=
= −∑ p

1 i−

 

If an unbiased estimator exists the right hand sides of (11) and (12) must be equal.  The 

same is true if we divide both sides of both equations by p, so we can write 

(13) .( )( ) ( )( ) ( ) ( ) ( )0 0
/ 1 1i i

i i
E I p i p i pλ λ∞ ∞

= =
= − = −∑ ∑ 11  

If the series expansion around p=1 of 

(14)  ( ) ( )0
/ 1 i

ii
p p pβ∞

=
= −∑

then equating the coefficients of like terms in (13) and (14) gives ( ) ( )1 n
nnλ β= −  as and 

                                                 
11 If is analytic on (0,1] then so is ( )p ( ) /p p see Krantz and Parks(1991). 
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unbiased estimator of ( )p .  This is a result from the sequential analysis literature due to 

DeGroot (1959).  It seems unknown in the simulation literature. 

 

1.5.   A Second Application to Logarithms 

 

The following result is new, but an application of the previous discussion. 

PROPOSITION 2:  Let I be a Geometric(p) random variable, then the Nth term of the 

recursion 

( ) ( ) ( ) ( )1 2 11 1 1
1 1

0 0

i ii i i
i
i

λ λ+ ++ = − + − >

= − =
= =

1i

 

is an unbiased estimator of ( )ln p . 

PROOF: Expanding ( )ln /p p  around p=1 gives a  

(15) . ( ) ( ) ( )
1

/ / ! i
i

i

f p p a i p
∞

=

= −∑ 1

!iBy induction it may be shown that . Assume  1 ( 1) ( 1)i
i ia i a+ = − + + −

                                      
( )( ) ( )1

1 11 2

ln / ln1n

n nn n

d p p
2n

p
a b

dp p p

+

+ ++ += + +  

is true for all n.  Differentiating  gives 

 

(16) 

( )

( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )

1 1

2 2

2 2

ln1
ln1 11 1

ln11 1

n
n nn n

n nn n

n n nn n

p
d a b

p p p
n a n b b

dp p p p
p

n a b n b
p p

+ +

2nn n+ + +

+ +

⎛ ⎞
+⎜ ⎟

⎝ ⎠ = − + + − + +

= − + + + − +

 

 

For n=1 we have 

(17) 
( )( ) ( ) ( )

2 2

ln / ln1 1
d p p p

dp p p
= + −  
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So  and   , equating coefficients gives the rest of the recursion 1 1a = 1 1b = −

(18) 

( )( )( )
( )( )

1

1

1

1

n n

n n

a n a

b n b

+

+

= − + +

= − +

nb

                                                      

( )

( ) ( )

1
1 1 !

( 1) !( 1)
1 ! 1 !

( 1)
!

( 1)

i
i

i
i

ii

i
i

a
i
i ia
i i

a i
i

i

β

β

+
+ = −

+

+
= − + −

+ +

= − + −

= − + −

 

so 

(19)                                  

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1
1

1 2

1 2 1

1 1

1 1 1

1 1

i
i

i i i
i

i i

i

i

i

λ β

β

λ

+
+

+ +

+

+ = −

= − − + −

= − + −

1

i+

with . ( )1 1λ = −

Q.E.D. 

   

1.6.  Unbiased Polynomials in the General Simulator Case 

 

More generally, simulators have the form ( ),s S Z ϑ=  where Z, perhaps a vector, has 

density function ( ;h z )ϑ  and where ( ) ( )( ) ( ), ;p S z h z dzϑ ϑ ϑ= ∫ .  Neither term in the 

integrand need be differentiable, though both can be, similarly, neither term need depend 

explicitly on ϑ  although at least one must.12  Cases of such simulators can be found in 

Genz (1992), Hajivassiliou and McFadden (1998) and include the mixed logit (Train 

(2002)) (a.k.a. random coefficients logit).   

Let ( ) 0iE s p p= − , where { }1, Is s be independent and identically distributed 

simulators. The uniformly minimum variance unbiased U-statistic for estimating the 
                                                 
12 We will only treat the polar cases where only one of h or S depends on ϑ . 
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parameters is given by ( )( )1

j

j E s j Iγ = ≤

(20) ( ) ( ) ( )
11

, /
ii

i r rr r
U s I s s C I i

< <
= ∑ ,

),

.  

This suggests using ( ) (0 0
, I

i ii
s I U s Iλ λ

=
= + ∑  to estimate polynomials of degree I.  

We state without proof the following proposition. 

  

PROPOSITION 3:  Let  then ( ) (0
, ,I

i ii
s I U s Iλ

=
= ∑ ) ( )( ) ( )00

, I i
ii

E s I p pλ
=

= −∑ . 

 

 

1.7.   A Third Application to Logarithms 

 

To estimate the logarithm, ln(p), define 0it p si= − . Again we state without proof the 

obvious proposition.  

PROPOSITION 4: Let ( ) ( ) ( ) ( )( )0 00
, ln ,I i

ii
t I p U t I ip

=
= − ∑ then 

( )( ) ( )( ) ( ) ( )0
, 1 lnI i

i
E t I p i p p Iε

=
− = − − = +∑ , where ( ),p Iε  is the error of 

terminating the polynomial expansions at I terms.   

As in Section 1, minimax approximations can be used instead of truncating the 

expansion.  The bias properties and values are identical, as the source of the bias is a non-

statistical truncation.   

 

1.8.  Unbiased Analytic Functions for General Simulators  

In section 1, we showed that truncating a series expansion at a fixed non-random 

degree gives an unbiased estimator of the truncated polynomial.  In section 2, we found if 

we truncated at a random degree, the polynomial estimated could be of infinite degree. 

What made the random truncation method work for the Bernoulli simulator was not so 

much changing to a new distribution, the Geometric, as it was the fact that the range of 

the Geometric random variable used to truncate terms was infinite, allowing the expected 

value to have an infinite number of terms so one could equate like terms, but having a 
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finite number of terms in the expansion with probability 1. Something very similar works 

here.   

1.9.  A First Simple Estimator 

 

Consider the following procedure, choose I according with a Geometric(w) 

distribution, then choose I independent  simulants, 1, ,is i I=  , with 

( ) 0iE s p p= − and let ( ) ( ) 1
, I

ii
s I I sλ

=
= ∏ be the estimator of ( )p .  By definition, 

(21) ( )( ) ( ) ( ) ( )00
1 i i

i
E I i w w pλ∞

=
= −∑ p−  

if ( )p  is analytic then  

(22)   ( ) ( ) ( ) ( )0 00
/ !ii

i
p p p p∞

=
= −∑ i

)
 

If  is unbiased then (21) equals (22) and since ( ,s I ( )p  is analytic, coefficients of 

like terms must be equal, hence ( ) ( ) ( ) ( ) ( )01 1I I I / !I w w p Iλ − = −  or  

( ) ( ) ( ) ( ) ( )( )01 / ! 1I I II p I w wλ = − −  which suggests the following proposition.  If ( )p  

is analytic and ( )~I Geometric w  then  

(23) ( ) ( ) ( ) ( ) ( )( )( )0 1
, 1 / ! 1 II II

ii
s I p I w w s

=
= − − ∏    

is an unbiased estimator of ( )p . There is a problem that the argument above implicitly 

exchanges an integral with an infinite sum. So the following proposition requires a proof. 

 

PROPOSITION 5: If ( )p  is analytic and ( )~I Geometric w  then 

( ) ( ) ( ) ( ) ( )( )( )0 1
, 1 / ! 1 II II

ii
s I p I w w s

=
= − − ∏   is an unbiased estimator of ( )p . 

PROOF: 

The only issue here is whether the expectation and sum can be interchanged. 

( ) ( ) ( ) ( )( )( )0 1
, / ! 1 III

ii
s I p I w w s

=
= − ∏
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( ) ( ) ( ) ( )( )( ) ( ) [ ]
( ) ( ) ( )( )( ) ( ) ( )
( ) ( )( )( )

01 1

01 1

0 01

, / ! 1 |

/ ! 1 | 1

/ !

III
iI i

II II
iI i

II
I

E s I p I w w E s I P I

p I w w E s I w w

p I p p

∞

= =

∞

= =

∞

=

= −

= −

= −

∑ ∏

∑ ∏

∑

−  

Since ( )p  is analytic, its series expansion, the last sum above, converges absolutely. 

Thus by the Levi monotone convergence theorem the interchange is justified. 

 Q.E.D.  

This estimator seems strange.  No outcome is close to ( )p  in any intuitive sense.  It 

almost necessarily has a large variance.  One simple correction is the following. Take the 

first I* terms of the expansion with probability 1.  As we discussed above, this will have 

a bias that depends on the unknown p. We correct the bias by taking an additional term 

that will be randomly selected as in Proposition 5.  More specifically let I* be fixed and 

let I be Geometric(w), we have as an estimator 

. Following the same approach as 

above we have 

( ) ( ) ( )*

1 1 1
, *I i I I

ii i i
s I i s I I sλ λ + +

= = =
= + + +∑ ∏ ∏ * 11 i

( )( ) ( ) ( ) ( ) ( )* *

1 1 0 1
, * 1I i I I I

i ii i I i
E s I i s I I s w wλ λ∞ + +

= = = =
= + + +∑ ∏ ∑ ∏ 1 1−

* 1

 

Then equating coefficients we have 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

0

* 1 * 1
0

1 / ! *

1 / * 1 ! 1

i i

I I II I

i p i i I

p I I w w i I I

λ
+ + + +

= − ≤

= − + + − = + +
 

We state without proof the following as its proof is nearly identical to the proof of 

Proposition 5. 

PROPOSITION 6: If ( )p  is analytic, I* is fixed and ( )~I Geometric w  then 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )* * 1* 1 * 1
0 01 1 1

, 1 / ! 1 / * 1 ! 1I i I Ii I Ii I I I
j ii j i

s I p i s p I I w w s+ ++ + + +

= = =
⎡ ⎤= − + − + + −
⎣ ⎦∑ ∏ ∏

  is an unbiased estimator of ( )p . 

While this estimator is clearly more intuitive it suffers from the problem that it does not 

use all the available information.  Specifically, it does not use optimal estimators to 

estimate the monomials ( )0
ip p− , replacing the simple products with the optimal U-
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statistic for estimating the monomial seem to be an intuitive improvement, similarly, 

filling in the gap between the I* term and the I*+I+1 term seems similarly intuitive.  The 

next estimator does just that.   

1.10. A More Complicated Estimator 

 

For expansions where we choose the degree to be a random variable I in [0,∞) 

having a finite expectation and having survival function ( )G i , then, as we will show,  

(24)  .( )( ) ( ) ( )00 0
,I i

i i ii i
E U s I G i p pα α∞

= =
= −∑ ∑ 13

So to obtain a series whose expectation is   

(25)  ( )00

i
ii

p pλ∞

=
−∑

we simply equate coefficients on the right hand side of (24) with those of (25) and solve 

for the iα .  This means that the coefficients of the estimating expansion are those of the 

desired expansion, weighted by a survival function ( )G i  that can be chosen by the user. 

This intuition is formalized by the following assumptions, lemmae and propositions.  

ASSUMPTION 1:   is an analytic function with circle of 

convergence 

( ) ( )00

i
ii

p pλ∞

=
= −∑ p

( ) { }0|C R p p p R= − < . 

ASSUMPTION 2: The  { }1, , Is s…  are independent and identically distributed for any 

I and 2is R ε≤ −  for arbitrary 0ε > 14 . 

ASSUMPTION 3:  The random truncation variable I has survival function , 

finite expectation, and is independent of any s.

( )G i
15  

                                                 
13 Note that the limits in the sums in (24) are different. 
14 The seemingly superfluous factor 2 will simplify some analysis later. 
15 If I defined on [ ]0, ∞ has a finite expectation then [ ] ( )

0i
E I G i

∞

=
= < ∞∑ . 
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ASSUMPTION 4: . ( ) 0|iE s I p p= −

We will find it convenient to define related functions: 

( ) 00
* i

ii
p pλ∞

=
= − p∑  

   ( ) ( ) 1
00

' i
ii

p i p pλ∞ −

=
= −∑  

( ) 00
'* i

ii
p pλ∞

=
= − p∑ . 

By the analyticity of ( )p  all are analytic and all have circle of convergence 16( )C R  

and all are bounded for (p C R )ε∈ −  for any 0ε > . 

If we naively chose our estimator to be (0
,I

I i ii
S Uλ

=
= )s I∑ , an expansion with 

coefficients αi equal to the iλ  in Assumption 4 and degree of truncation, I, as in 

Assumption 3, we would obtain a biased estimator, but one that suggests a correction to 

obtain an unbiased one.  First, the expectation of the naive estimator, 

LEMMA 1:   Under Assumptions 1 – 4 ( ) ( ) ( )( )00

i
I ii

E S G i p pλ∞

=
= −∑       

Proof:   Let  then (0
,I

I i ii
g Uλ

=
= ∑ )z I

( ) ( )

( )

( ) ( )

( ) ( )
11

11

0

0

0

0

| ,

,

/ ,

/ ,

ii

ii

I
I i ii

I
i ii

I
i r ri r r

I
i r ri r r

E g I E U z I

E U z I

E s s C I i

E s s C I i

λ

λ

λ

λ

=

=

= < <

= < <

=

≤

=

≤

∑
∑
∑ ∑
∑ ∑

 

( )

( )

1
10

10

10

1

/ ,

*

i

I i
ii r r

I i
ii

i
ii

i

E s C I i

E s

E s

E s

λ

λ

λ

= < <

=

∞

=

=

=

≤

=

∑ ∑
∑
∑

 

Since 1 2s R ε< − , 1E s lies strictly in the circle of convergence of .  By Levi's *

                                                 
16 See Parks and Krantz (1992). 
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Theorem ( see Kolmogorov and Fomin (1975) Chapter 30, Section 8, Theorem 2.) 

   
( ) ( )( ) [ ]

( ) [ ]
0 0

00 0

, |I
I i iI i

I i
iI i

E g E U z I I P I

p p P I

λ

λ

∞

= =

∞

= =

=

= −

∑ ∑
∑ ∑

moreover both the inner sum and outer converge absolutely, hence by the Weierstrauss 

Double Sum Theorem (Knopp) the order of the sums can be exchanged.  Thus 

( ) [ ] ( ) [ ]
( ) [ ]
( ) ( )

0 00 0 0 1

00 1

00

I i i
i iI i i I i

i
ii I

i
ii

i

p p P I p p P I

p p P

p p G i

λ λ

λ

λ

∞ ∞ ∞

= = = = +

∞ ∞

= =

∞

=

− = −

= −

= −

∑ ∑ ∑ ∑
∑ ∑
∑

I
+

 

Q.E.D. 

 

Each term of the expansion is off by a factor of ( )G i . This suggests that to obtain 

unbiased estimates of an analytic function whose coefficients are λi we use weighted 

coefficients for the estimating expansion, in particular,  

 

ASSUMPTION 5: ( ) ( )( ) ( )1
, ,I

i ii
z I U s z I G iλ

=
= /∑  

 

However, if we stop here, we might have a new problem, as this expansion may not 

converge.  For though the are all in the circle of convergence, ( ,iU s I ) ( )( ) ( ), /iU s z I G i  

and more importantly, can easily be outside the circle of 

convergence.  Thus, a crucial condition in rearrangement the proof would be violated.  So 

we additionally require that 

( )( )( ) ( ), | /iE U s z I I G i

( )( )( ) ( ) ( ) 0, | / 0iE U s z I I G i C R I I∈ ∀ ≥ ≥ , that is, 

eventually the ratios all fall in the circle of convergence.  Another way of writing this is, 

( ) ( )( )( ) ( ) ( )( ) ( ) 0, | / 0i i
iR E U s z I I R G i C R I Iε ε− − ∈ ∀ ≥ R≥ , since ε−  is in the 

circle of convergence, this is true if ( )( )( ) ( ) ( )( ) 0, | / 1, 0i
iE U s z I I R G i I Iε− ≤ ∀ ≥ ≥ , 

since the simulants satisfy Assumption 2 and so are less than 2R ε−  this means that a 
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sufficient condition for convergence is the survival function must go to zero more slowly 

than ( ) (( 2 /
i

R R ))ε ε− − .  Thus the following guarantees convergence and existence of 

the expansion.   

ASSUMPTION 6: For all , 0 1a≤ < ( )/ 1ia G i < . 

This assumption further limits the distributions that can be used to generate the truncation 

term.  In the last section, on computation, we derive a class of survival functions 

satisfying this assumption as well as supporting a finite expectation, an assumption we 

will need below. 

 

PROPOSITION 7:  Under Assumptions 1-6    ( )( ) ( ),E z I p=  

PROOF:    Using the approach of the last Proposition, we write 

then ( ) (0
, /I

I i ii
g U z Iλ

=
= ∑ )G i

( )( ) ( ) ( )( ) [ ]( )0 0 0
, , /I

i i II i I
E z I E U z I G i P I E gλ∞ ∞

= = =
= =∑ ∑ ∑ . We show the sum 

converges absolutely.  

( ) ( ) [ ]

( ) [ ] ( )

( ) ( ) [ ] ( )

( ) ( )( ) [ ] ( )
11

11

0

0

0

0

, /

, /

/ , /

/ , /

ii

ii

I
I i ii

I
i ii

I
i r ri r r

I
i r ri r r

g U z I G i P I

E U z I P I G i

E s s C I i P I G i

E s s C I i P I G i

λ

λ

λ

λ

=

=

= < <

= < <

=

≤

=

≤

∑
∑
∑ ∑

∑ ∑

 

   

( )( ) [ ] ( )

[ ] ( )

( ) ( )( ) [ ] ( )

( ) ( ) ( )( ) [ ] ( )

( ) [ ] ( ) ( )( ) ( )

( ) [ ]

1
10

10

10

0

0

/ , /

/

/ /

2 / /

2 / /

*

i

I i
ii r r

I i
ii

i ii
ii

ii
ii

ii
ii

E s C I i P I G i

E s P I G i

R E s R P I G i

R R R P I G i

R P I R R G i

R P I

λ

λ

λ ε ε

λ ε ε ε

λ ε ε ε

ε

= < <

=

∞

=

∞

=

∞

=

=

=

≤ − −

≤ − − −

⎡ ⎤≤ − − −
⎣ ⎦

≤ −

∑ ∑
∑
∑
∑
∑
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This latter converges to zero so by Levi (Kolmogorov and Fomin)  the order of the 

continuous expectation and the sums can be exchanged as I → ∞ , moreover, the outer 

sum converges absolutely, so by the Weierstrauss rearrangement theorem the order of the 

sums can be rearranged. 

Taking expectations and rearranging gives 

( )( ) ( ) ( )( ) [ ]

( ) ( )( ) [ ]

( ) [ ] ( )

( )
( )

0 0

0 1

0 1

0

, 1 /

1 /

1 /

1

I i
iI i

i
ii i I

i
ii i I

i
ii

E z I p G i P I

p G i P I

p P I G i

p

p

λ

λ

λ

λ

∞

= =

∞ ∞

= = +

∞ ∞

= = +

∞

=

= −

= −

= −

= −

=

∑ ∑
∑ ∑
∑ ∑
∑

 

Q.E.D. 

 

We mention that this estimator is a Rao-Blackwell estimator since for each I, the 

order statistics are sufficient, hence by a theorem due to Fay(1950)17, ( ) ( ){ }1 , , ,Ix x I is a 

sufficient statistic.  In the next section we will need an additional property for this 

estimator.  

DEFINITION a.(HM): The simulation residual process is given by 

 ( ) ( )( )1
/T

t t t tt
E E

=
′ ′− − −∑ T .18   

Following HM, for purposes of using the simulants in estimation, we will need to show 

this and various other simulation residual processes are stochastically equicontinuous.  

DEFINITION b.:  A simulant ( ),s s ω ϑ=  is said to be stochastically equicontinuous if for 

any *η and *ε  there is a δ  such that | 'ϑ ϑ ϑ δ∀ − <  

 ( ) ( )Pr , , ' * *s sω ϑ ω ϑ ε η⎡ ⎤− > ≤⎣ ⎦ .   

 

                                                 
17 See Theorem 4.3.1 in Govindarajulu(1987). 
18 indicates the expectation with respect to the simulation process. E
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PROPOSITION 8:   Let the simulants { } 1, , , 1, ,it ts i I t T= = and 

( )1
/T

tt
E T

=∑ be stochastically equicontinuous and let  be the unbiased estimators of 

the analytic functions  then the residual simulation process is stochastically 

equicontinuous.  

t

t

PROOF:  Under the assumptions above residual simulation process is stochastically 

equicontinuous if  
1

/T
tt

T
=∑  is (see Newey (1991) ).  We will find a 0δ >  such that 

| 'ϑ ϑ ϑ δ∀ − <
1

Pr /T
t tt

T ε η
=

⎡ ′− >⎣∑ ⎤ ≤⎦ .  By the boundedness of analytic functions 

and Chebychev's inequality we have 

( ) ( ) ( )
1 1

2 2
1

Pr / Pr * max /

* max /

t

t

T T
t t i t itt t i I

T
it itt i I

T s s

V s s T

Tε ε

ε

= = ≤

= ≤

⎡ ⎤⎡ ⎤′ ′− > ≤ − >⎣ ⎦ ⎢⎣ ⎦

′≤ −

∑ ∑

∑
⎥

 

Now ( ) ( )
( ) ( )
( ) ( )

2

2

2

max max
t t

i t it i t iti I i I

t i t it

i t it

V s s E s s

E I E s s

E I E s s

≤ ≤
′ ′− ≤ −

′≤ −

′= −

 

By stochastic equicontinuity for each t, and any *η and *ε  there is a tδ such that 

| ' tϑ ϑ ϑ δ∀ − <  Pr * *i t its s ε η′− > ≤⎡ ⎤⎣ ⎦ .  Let i t itz s s′= − and f be its density 

then ( ) ( )2 2

0

R

it itE s s z f z dz′− = ∫ .  Let 

( ; *I z )ε be the indicator for the set { }|z z *ε≤  then 

( ) ( ) ( ) ( )( ) ( )

( ) [ ] ( )( ) [ ]( )
( ) ( ) [ ]( )
( ) ( )

2 2

0 0 0

2 22

2 2

2 2

; * 1 ; *

* Pr * * 1 Pr *

* 1 Pr *

* *

R R R
z f z dz I z z f z dz I z z f z dz

z R z

R z

R

ε ε

ε ε ε ε

ε ε

ε η

= + −

≤ ≤ + − − ≤

= + − ≤

≤ +

∫ ∫ ∫ 2

 

so  
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( ) ( ) ( )

( ) ( ) ( ) ( )( )

2 2
1 1

2 2 2 2

Pr / * max /

* * * /

t

T T
t t i t itt t i I

T V s s

E I R

Tε ε

ε η ε

η

= = ≤
⎡ ⎤′ ′− > ≤ −⎣ ⎦

≤ +

=

∑ ∑
 

Now choose any *η and *ε  so that ( ) ( ) ( ) ( )( )2 2 2 2* * * /E I Rη ε η= + ε  

and choose { }min tt T
δ δ

≤
= . 

Q.E.D. 

 

 

1.11. Final Applications to the Logarithm 

For the log-likelihood, again expand ln(p) around 0p  to obtain 

(26) ( ) ( ) ( ) ( ) ( )0 01
ln ln 1 /i i i

i
p p p p ip∞

=
= + − −∑ 0  

and let ( )~I Geometric w , which has survival function,19 .   ( ) ( )1 iG i w= −

( )( )( ) ( ) ( ) (0, | / 1 / 1i i
iE U s z I I w p p w− = − − )i  so if 

 (27) ( ) ( )0 0/ 1 2p p w M− − ≤ < p

)

  

then  by Proposition 6  are the appropriate weights.  

Without knowing p it is hard to guarantee (27).  Alternatively, we can use survival 

functions that go to zero more slowly (eventually) than 

( ) ( )01 / 1 , 1, ,i ii
i ip w i Iλ = − − = …

( 0

i
p p− . As we will see below, 

the random truncation point must also have a finite mean for use in estimation.  As shown 

below, a simple practical class of survival functions satisfying all requirements has the 

form  ( ); , 0 1, 0 1.iG i B B B
α

α α= < < < <

PROPOSITION 9: Let then for any  there is an I* 

such that for all , 

( ) 0 1, 0iG i B B
α

α= < < < < 1

1

1a <

*i I> ( )/ia G i M≤ < .  Moreover, ( )lim / 0i

i
a G i

→∞
= . 

General construction methods and random number generation for a truncation variable 

                                                 
19 See Johnson, Kotz and Kemp(1993). 
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with this survival function are presented in the last section. 

 

2. DERIVATIVES AND THE SCORE  

In this section, we develop and examine three estimators for the score, the gradient of the 

log-likelihood.  We are solely interested here in developing unbiased estimators of 

derivatives with respect to ϑ  when the simulants depend on ϑ  either explicitly or 

implicitly. The first estimator is simply the gradient of an unbiased analytic function 

estimator when the simulator depends explicitly on ϑ  and is continuously differentiable. 

We shall refer to this as a direct estimator; the mixed logit is a good example. The second 

estimator is the numerical gradient with fixed increment, or step size, ∆ .  We shall call 

this the numeric estimator; we shall use this when the simulant does not depend 

differentiably on ϑ .  The final estimator will be used when the simulant does not depend 

on ϑ  explicitly but the density of the simulating process does, and the expected value of 

the log-likelihood is differentiable. This estimator seems new and will be developed fully 

below.  However it is very simply described: it is the unbiased estimator of the log 

likelihood multiplied by the score of the simulation process itself.  We shall call it the 

indirect estimator.  For use in estimation we need versions that fit neatly into the 

framework of HM, particularly, we will need to show the three implied score residual 

simulation processes are stochastically equicontinuous. We will demonstrate stochastic 

equicontinuity of the simulated scores as a partial consequence of the stochastic 

equicontinuity of commonly used simulants, i.e. those demonstrated as such by HM.   

2.1.   The Direct Score 

We begin with the direct estimator.  For the mixed logit the simulant can be 

written as an explicit function of the parameter 

(28) ( )
( )( ) ( )( )( )

1/ 2

1/ 2 1/ 2
1 1

exp / exp ,p
jj

s S Z

W Z W Z

µ

µ µ
=

= + Ω

= + Ω + Ω∑

 

where (~ 0, )Z N I . Clearly, (28) is continuously differentiable and depends explicitly on 

the parameters.  More generally, if ( );s s z ϑ=  where s is differentiable, we use the 
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gradient of the unbiased log-likelihood ( )( ); ,s z Iϑ  given by 

(29) ( )( ) ( )( ) ( )1
; , ; , /I

i ii
s z I U s z I G iϑ ϑϑ λ ϑ

=
∇ = ∇∑  

where 

(30) ( ) ( ) ( )
11

, /
i ji

i rr r I
j i

U s I s s C I iϑ ϑ≤ < < ≤
≠

∇ = ∇∑ ∏ ,r  

as an unbiased estimator of the score. The formula may look complicated but is quickly 

calculated using a recursive algorithm developed in Section 4.  The next two propositions 

show that the direct score is unbiased and stochastically equicontinuous. 

 

PROPOSITION 10: Let ( ) 2
; *E s Z Cϑ ϑ∇ ≤ < ∞  then 

1 there exists a random variable, C, with finite second moments then 

( )( ); ,s Z I Cϑ ϑ∇ ≤ and 

2 ( )( ) ( )( ) ( ) ( ) [ ]

( ) ( )( )
( )( )

1 1 1

1
11

; , ; , / *

.

I I
i i i iI i i

i
iI

E s Z I U s z I G i h z dz P I

i p s

p

ϑ ϑ

ϑ

ϑ

ϑ λ ϑ

λ ϑ ϑ

ϑ

∞

= = =

∞ −

=

⎡ ⎤⎡ ⎤∇ = ∇⎣ ⎦ ⎣ ⎦

= ∇

= ∇

∑ ∑ ∏∫
∑

 

PROOF:  The proof is an exercise in exchanging the order of various 

limiting operations. Let ( )( ) ( )1
; , /I

I i ii
g U s z Iϑλ ϑ

=
G i⎡ ⎤= ∇⎣ ⎦∑  then 

( )( ) ( )

( ) ( ) ( )

{ } { } ( )

( ) { } ( )( ) { } ( )

1

1

1 1 ,

1

1

11 1

1

, , /

/ , /

max max /

max / max /

j ki

I
I iii

I i
r rii r r I j k j k i

iI
i iii i I i I

iI i i
i iii i I i I

g U s z I G i

s s C I i G

s i s G i

i

R s R i s G

ϑ

ϑ

ϑ

ϑ

λ ϑ

λ

λ

λ ε ε

=

= < < ≤ = ≠ ≤

−

= ≤ ≤

−− −

= ≤ ≤

⎡ ⎤≤ ∇⎣ ⎦
⎡ ⎤= ∇⎢ ⎥⎣ ⎦

≤ ∇

= − − ∇

∑

∑ ∑ ∑ ∏

∑
∑ i
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( ) ( ) ( )( ) { } ( )

( ) { } ( ) ( )( ) ( )

( ) { } ( ) ( )

( ) { }
( ) { }

1 1 1

1

11

1

1 1

1

1

1

2 / max /

max 2 / /

max /

max

'* max

I i i i
iii i I

iI i
iii i I

I i i
iii i I

i
iii i I

ii I

R R R i s G i

R i s R R G

R i s G i

i R s

R s

ϑ

ϑ

ϑ

ϑ

ϑ

λ ε ε ε

λ ε ε ε

λ ε α

λ ε

ε

− − −

= ≤

−−

= ≤

− −

= ≤

∞ −

= ≤

≤

≤ − − − ∇

≤ − ∇ − −

⎡ ⎤≤ − ∇ ⎣ ⎦

≤ − ∇

= − ∇

∑
∑
∑
∑

i

 

Let { }sup max ii I
C ϑ

ϑ ≤∈Θ
= ∇ s  and the first assertion is proved. For the second assertion, we 

have from the foregoing that 

( ) { } ( ) ( )1| '* max | '* '*I ii I
*E g I R E s I R IE s R IMϑ ϑε ε

≤
⎡ ⎤≤ − ∇ ≤ − ∇ ≤ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦ ε  

exists for each I.  Since [ ]E I < ∞ , ( ) ( ) [ ]0
|I II

E g E g I∞

=
= P I∑  converges for all I. 

Thus, the sum ( ) [ ] ( ) [ ]1 10
'* '*

I
R E s IP I R E s E Iϑ ϑε ε∞

=
− ∇ = − ∇⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  exists.  So 

the series  converges absolutely and the order of all limiting operations can be 

interchanged.  Again by Levi's theorem that limit is 

0 II
g∞

=∑

( )( ) ( ) ( ) [ ]1 1 1
; , /I I

i i i iI i i
U s z I G i h z dz P Iϑλ ϑ∞

= = =
⎡ ⎤∇⎣ ⎦∑ ∑ ∏∫   

[ ] ( ) ( ) ( )( ) [ ]

( )( ) ( )( ) ( ) [ ]

( ) ( )( ) ( ) [ ]

10 1
0

1
1 10 1

0

1

0
0

| / ,

/

/

k ji

I i
I i r ri r r I k

I j k

iI i
ii k

I

I i
ii

I

E g E s s I C I i

Es Es G i P I

ip p G i P I

ϑ
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λ ϑ ϑ

∞

= < < ≤ =
= ≠

∞ −

= =
=

∞
−

=
=

⎡ ⎤⎛ ⎞
= ∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤= ∇
⎣ ⎦

⎡ ⎤= ∇⎣ ⎦

∑ ∑ ∑ ∑ ∏

∑ ∑ ∑

∑ ∑

G i P I

 

Exchanging sums and using definition of the survivor function ( ) [ ]1I i
G i P I∞

= +
= ∑  gives 
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∞
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⎡ ⎤= ∇⎣ ⎦

⎡ ⎤⎡ ⎤= ∇⎣ ⎦ ⎣ ⎦

⎡ ⎤= ∇⎣ ⎦

′= ∇

= ∇

∑ ∑

∑ ∑

∑ ∑

∑

 

Q.E.D. 

PROPOSITION 11: Under the Assumptions of the previous Proposition and the assumptions 

that ( ;s Zϑ )ϑ∇  is differentiable, and ( )( )pϑ ϑ∇ is equicontinuous the simulation 

residual process for the direct score is stochastically equicontinuous.  

PROOF:  Define  as above. Using Lemma 3 on differences of products, and 

Lemma 5 on derivatives of U-statistics, 

Ig

( ) ( )( )

{ } ( ) ( )( )

{ }

1

1

1
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0 1 1

0 1 1

1 1

' ' / ,

' ' ' / ,
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k ji k
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I I i r r ri r r I k r

j k j k

I i
i r r rri r r I k r r

j k j k j k

i
i r rr r I k r

j k

g g s s s s C I i G i

s s s s s s C I i G i

s s s

ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

λ

λ

λ

= ≤ < < ≤ =
≠ ≠

= ≤ < < ≤ =
≠ ≠ ≠

≤ < < ≤ =
≠

⎡ ⎤
− = ∇ − ∇⎢ ⎥

⎣ ⎦
⎡ ⎤⎧ ⎫

= ∇ − ∇ − ∇ −⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦
⎡

= ∇ − ∇⎢
⎣

∑ ∑ ∑ ∏ ∏

∑ ∑ ∑ ∏ ∏ ∏

∑ ∏

{ } ( ) ( )( )

0

1 ' , ' ' , '
' ' ' / ,

j jj jk

I

i

r rr rj k i j i k j j i j kr
s s s s s C I i Gϑ

=

≠ ≤ < ≠ < < ≠

⎤⎡ ⎤−∇ − ⎥⎢ ⎥⎣ ⎦ ⎦

∑ ∑

∑ ∏ ∏ i

 

Proceeding as before we have 

 25 



( ) ( ) ( ) { } ( )

{ } ( ) ( ){ }
( ) ( ) ( )( )

1 1'
0

2 1

2

'/ max max /

' 'max max 2 /

' ' ''* max max max / 2

I i i
I I i i i ii i I i I

i i
i i ii I i I

i i i i ii I i I i I

g g R G i i s s s R
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1i

R s s s s s R R

ϑ ϑ

ϑ

ϑ ϑ ϑ

λ ε ε

ε ε

ε ε

− −

= ≤ ≤

− −

≤ ≤

≤ ≤ ≤

⎡ ⎛ ⎞⎡ ⎤− ≤ − ∇ − ∇ −⎜ ⎟⎢⎣ ⎦ ⎝ ⎠⎣
⎤+ ∇ − − −

Mε

−

⎥⎦
⎛ ⎞≤ − ∇ − ∇ + ∇ − − −⎜ ⎟
⎝ ⎠

∑

 

where ( ) ( )( ) ( )2 / /
i

R R G i Mε ε− − ≤ i∀

)

 

By assumption  ( ;s Zϑ ϑ∇  is differentiable, thus using Taylor's expansions we have  

( ) ( )( ) ( ) ( )
*

' * *' sup ' 'i i i i is s s s Bϑ ϑ
ϑ

ϑ ϑ ϑ ϑ
∈Θ

− = ∇ − ≤ ∇ − = −ϑ ϑ  and 

( )' 'i i is s Cϑ ϑ ϑ ϑ∇ − ∇ ≤ −  for some random .  0iC ≥

Hence, 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

( )

2 2'

2 2

'* max ' max ' / 2

'* max max / 2 '

'

I I i ii I i I

i ii I i I

i

g g R C B R R M

R C B R R M

A

ε ϑ ϑ ϑ ϑ ε ε

ε ε ε ϑ ϑ

ϑ ϑ

≤ ≤

≤ ≤

⎛ ⎞− ≤ − − + − − −⎜ ⎟
⎝ ⎠

⎛ ⎞= − + − − −⎜ ⎟
⎝ ⎠

= −

 

So for all , 'ϑ ϑ  such that ( )'ϑ ϑ− < δ we have 

( ) ( ) [ ]'Pr Pr ' Pr / ' Pr /I I i i ig g A A Aε ϑ ϑ ε ε ϑ ϑ ε δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− > ≤ − > = > − ≤ >⎣ ⎦ ⎣ ⎦⎣ ⎦  . 

Now for any η  and ε , δ  can be chosen so small that 

 [ ]'Pr Pr /I I ig g Aε ε δ η⎡ ⎤− > ≤ > <⎣ ⎦ .  Since ( )( )pϑ ϑ∇ is equicontinuous, Lemma 1 

below and Lemma A.1 of Newey (1991) hold and the proposition is proved. 

Q.E.D. 

2.2.    Indirect Score 

So when the simulant is a differentiable function of ϑ , simply take the derivative. 

However, when the distribution of s depends on unknown parameters ϑ  but s does not, 

or does so, but is not differentiable, other approaches are required. The second of the 
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estimators mentioned above, we call the indirect score; it is valid when the density of the 

simulating process is differentiable.   

An example of such is the mixed logit written as in (9). There s does not depend 

on ϑ , but its expectation, 

(31) ( ) ( ) ( ) ( )( ) ( )1 1
exp / exp ;p

jj
E s W z W z h z dzσ ϑ ϑ

=
= = ∑∫  

does.  By differentiating both sides, we can discover another unbiased estimator of the 

score.  More generally, let ( )( , )s z I be an unbiased estimator of ( )( )p ϑ , where s does 

not depend explicitly on ϑ  and let { }1, , Iz z z=  have density ( ) (1
, ,I

I ii
h z h z )ϑ ϑ

=
= ∏  

conditional on I, then by unbiasedness, 

(32) ( )( ) ( )( ) ( )0
, , Pr[Ii

]p s z i h z dx I iϑ ϑ∞

=
⎡ ⎤= =⎣ ⎦∑ ∫ .  

 Assuming we can freely differentiate both sides by θ term by term if necessary  

(33) ( )( ) ( )( ) ( )
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= ⋅ ∇
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∑ ∫
∑ ∫
∑ ∫ ]=

)

 

So if ( )( ,s z I  is an unbiased estimator of ( )( )p ϑ  then the simple product  

(34) ( )( ) ( )( )
( ) ( )( ) ( )( )

*

0

, ln ,

, / ln ,

I

I
i i Ii

S z I h z

U z I G i h z

ϑ ϑ

ϑ

ϑ

λ ϑ
=

= ⋅ ∇

= ∇∑
 

is unbiased for ( )( pϑ )ϑ∇ . This is formalized by the following, 
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ASSUMPTION 7:    Conditional on I, { }1, , IZ Z…  are independent and identically 

distributed. 

ASSUMPTION 8:      Conditional on I, { }1, , IZ Z Z= has density ( ) (1
, ,I

I ii
h z h z )ϑ ϑ

=
= ∏ ,. 

ASSUMPTION 9:      is an integrable function of Z. ( )s S Z=

ASSUMPTION 10:   ( ) ( ) ( ),Ip S z h z dzϑ ϑ= ∫  

PROPOSITION 12: Let ( )( ) ( )( )* , ln ,IS z I h zϑ ϑ ϑ= ⋅ ∇ ,  if A1-A10 hold then 

( ) ( )( )* * max ln ,ii I
R I h zϑ ϑε ϑ

≤
≤ − ∇ ; if, in addition, ( )E I < ∞ holds, then 

( ) ( )(*E pϑ θ )ϑ= ∇ .                                             

PROOF: ( )( ) ( )( )
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= =
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Using an argument we have used before 
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Using Wald's Equation20

                                                 
20 See Ross (1992) Theorem 3.6 p.38. 
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( ) ( )( )( )
( ) ( ) ( )( )( )
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E R E h z

R E I E h z

ϑ ϑ
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Thus by the Levi's theorem (33) holds since exchanging the infinite sum, differentiation 

and the integral is valid. 

Q.E.D. 

Thus an unbiased estimate of the score is  times the score of the log-likelihood of the 

distribution of the underlying simulants.  It is also stochastically equicontinuous. 

 

PROPOSITION 13: Provided ( )( )ln ,h zϑ ϑ∇  is continuously differentiable and the 

simulant is stochastically equicontinuous, the indirect score and its residual simulation 

process are stochastically equicontinuous. 

Proof: Write ( )( ),s z I=  and ( )( )' ' ,s z I=  where Iz R∈ and the densities of the 

simulation processes  and  z 'z  are ( ),h h z ϑ= and ( )' ,h h z 'ϑ= , respectively. 

( ) ( )

( ) ( )

( ) ( ) ( ) '

Pr ' ' * Pr ' ' ' *

Pr ' * / 2 Pr ' ' * / 2

Pr * ' * / 2 Pr '* ' max * / 2i ii I

h h h h h

h h h

R h h l R h s s

η η

η η

ε η ε η
≤

⎡ ⎤− > = − − − >⎡ ⎤⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤≤ − > + − >⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤≤ − − > + − − >⎣ ⎦ ⎣ ⎦
  

For the first term, since h is twice logarithmically differentiable, we may, for any *ε and 

*η , find a *δ  such that 

( ) ( )

( )( )
( )
( )

Pr * ' * / 2 Pr * ' * / 2

Pr * / 2 * '

Pr * / 2 * *

* / 2 ' *

h h B

B

B

η ϑ ϑ

η ϑ ϑ

η δ

ε ϑ ϑ

⎡ ⎤ ⎡− > ≤ − >⎣ ⎦ ⎣
⎡ ⎤≤ > −⎣ ⎦

≤ >⎡ ⎤⎣ ⎦
≤ ∀ − ≤

η

δ

⎤⎦

 

For the second term, consider the set ( ){ } ( ){ }, : * / 2 , :B y x yx y x xη η= ≥ ∩ ≥  where x 

corresponds to 'max i ii I
s s

≤
− and y corresponds to 'h , B is contained in the set 
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( ) ( ){ }, | , * / 2A x y x yη η η= > > .  Hence and B A⊆

( ) ( )( )
( ) ( )( )( )

' ' '

'
1 1 1

Pr ' max * / 2 '* max Pr ' * / 2 * Pr max

[ ] Pr , ' * / 2 * Pr

i i i i i ii I i I i I
h s s l s s h s s

E I h z s s

η η η η

ϑ η η η

≤ ≤ ≤
⎡ ⎤ ⎡ ⎤− > ∩ − ≤ ≤ ≥ + − ≥⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤≤ ≥ + − ≥⎣ ⎦ ⎣ ⎦

η⎡ ⎤
⎣ ⎦

 

For the first term of this latter, recall *ε and *η are fixed arbitrarily , pick η so small that 

( ) ( )( )( ) (1[ ] Pr , ' * / 2 * * / 4E I h z ϑ η η ε⎡ ≥ <⎣ )⎤⎦ .  For the second of these terms, since 

is stochastically equicontinuous we can find a ( )s z oδ  such that 

( ) ( ) ( )'
1 1[ ] Pr * / 4 ' oE I s s η ε ϑ ϑ⎡ ⎤− ≥ < ∀ − ≤⎣ ⎦ δ     hence 

( ) ( )Pr ' ' * * / 2 ' oh η ε ϑ ϑ⎡ ⎤− > < ∀ − ≤⎣ ⎦ δ

)

 

 

now set (min *, oδ δ δ=  so for each for any *ε and *η , we have 

( )Pr ' ' * * 'h h η ε ϑ ϑ− > < ∀ − ≤⎡ ⎤⎣ ⎦ δ .  Thus the indirect score is stochastically 

equicontinuous. Differentiability of the simulation likelihood means it is equicontinuous. 

By Lemma 1 below and Lemma A.1 of Newey (1991) the proposition is proved.  

Q.E.D. 

 

2.3.    The Numeric Score 

 

Finally, since the numerical derivative, ( ) ( )( ) /ϑ ϑ+ ∆ − ∆ , is simply a linear 

combination of two unbiased estimators, it is automatically unbiased for any fixed .  

For use in SML estimation it must also be shown to be stochastically equicontinuous, as 

in the next theorem. 

∆

PROPOSITION 14: If ( )s Z  is stochastically equicontinuous then the residual 

simulation process for the numerical gradient of the unbiased estimator of an analytic 

function is stochastically equicontinuous. 
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PROOF:  By Proposition 8 the residual simulation process for is stochastically 

equicontinuous.  We state without proof that a linear combination of such processes is 

also stochastically equicontinuous. 

t

Q.E.D. 

 

 

3. SML ESTIMATION 

 The results presented in this paper provide unbiased estimators for the log-

probability, score and any other rational functions of expectations that have a radius of 

convergence equal to the range of the random variable used for simulation. It remains 

then to show SML estimators based on the score estimators are consistent and 

asymptotically normal.  The conditions below are easy to check and cover all practical 

situations; they are not the weakest possible. Because of the unbiasedness, the structure 

of the problem is a bit simpler than that of HM.  Indeed, the SML using any of the 

simulators above is a simple exercise in checking their conditions. 

  

ASSUMPTION 11: The true value *ϑ  is in the interior of a compact parameter set . Θ

ASSUMPTION 12: The simulated score is an unbiased estimator of  ( )ϑ ϑ∇ . 

ASSUMPTION 13: The score ( )ϑ ϑ∇  is continuously differentiable on Θ  .  

ASSUMPTION 14: The score, its derivatives, and the simulated score, are dominated by 

functions independent of ϑ  with finite first and second order moments, and the simulants, 

s, lie in a compact set ( 2C R )ε−  in the circle of convergence ( )C R  and the residual 

simulation process is stochastically equicontinuous. 

ASSUMPTION 15:  ( ) 0nE ϑ ϑ∇⎡ ⎤⎣ ⎦ =  if and only if *ϑ ϑ= .  

ASSUMPTION 16:  ( )n nJ E ϑϑ ϑ= − ∇⎡⎣ ⎤⎦  is positive definite, where En denotes expectation 

with respect to the distribution of the observations 

ASSUMPTION 17:  Observations and simulators are independently identically distributed 

across observations 
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ASSUMPTION 18:  The SML estimator solving ( )0 ϑ ϑ= ∇ exists for each N.  

 

THEOREM 1:  Under Assumptions 1-17 the SML estimator satisfies  

ˆ *P
Nϑ ϑ⎯⎯→  

( ) ( )1 1 1ˆ * ~ 0,d
NN Z N J Jϑ ϑ − − −− ⎯⎯→ − QJ

N

 

where . ( ) ( )TQ E ϑ ϑϑ ϑ⎡ ⎤= ∇ ∇⎣ ⎦

PROOF:   By construction the three scores developed satisfy Assumptions 12 and 13. 

The rest of the Assumptions depend on the data generating process (as opposed to the 

simulation process). The theorem then follows directly from HM. 

Q.E.D. 

4. COMPUTATIONAL ISSUES 

To prevent chatter, the effect of having the objective function change iteration to 

iteration from taking differeing independent trials, one can use the same set over and 

over.  For one simulates I1, ,n = n, then simulates that number random elements iω  

and then calculates , reusing the same I( ), 1, ,i is s i Iω ϑ= = n n and iε  each iteration.   

4.1.  A Useful Recursion 
 The sums of products for the U-statistics and their gradients in can be difficult to 

calculate efficiently.  The following recursion is useful in this regard.  Define M and M' 

with regard to the U statistic and gradient as 

                                   
( ) ( )
( ) ( )

, ,

, ,
j j

j j

M C I j U s I

.M C I j U s Iϑ

=

′ = ∇
          

And let { }1, IM M M=  then the algorithm 
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1

'

1
0 1

0

1

0

i

i
T
i

T
i

i

i
M s

M s
while i I

i i
M

M s s
M M

M
M s

M
endwhile

ϑ

ϑ

=
=

= ∇
<

= +

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ = ⋅⋅ + ⋅⋅ + ⋅⋅ ∇⎢ ⎥ ⎢ ⎥ ⎢ ⎥

′⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅⋅ + ⋅⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

generates the M's and their gradients.  

4.2.    Survival Functions 

In this section we list some useful survival functions, a prove the function suggested 

above indeed has a finite mean.  If ( )~N Poisson λ  then ( ) ( ) (1, /PG i i iγ λ )= + Γ  where 

( ,i )γ λ  is the incomplete gamma function.  If ( )~N Geometric ω  then ( ) ( )1 i
GS i ω= − .  

To use at least  terms in the expansion, we use a displaced survival function. Displaced 

survival functions are simply computed from the survival function.  If I has survival 

function  and 

0n

( )G i 0Z I n= +  where  is fixed then the survival function for z is given 

by

0n

( ) ( )( )00Z NG z S z n= ∨ − .  For the domination result required by HM, we proposed a 

form for a survival function that would satisfy our needs without requiring us to know the 

unknown probability p. We provide the details here. 

Survival functions for random variables with expectations have a simple structure 

( )0 1G =  

( ) ( )1 0 0G i G i i≥ + ≥ ≥  

( ) 0G ∞ =  

For a finite expectation we need ( ) ( )0i
E I G i M∞

=
= ≤ < ∞∑ . We also want a survival 
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function that goes to zero slower than ( 0
i)p p− .  If I is Geometric(w) with  and we 

set ,  then (  is such a survival function.  We need one that works even if we 

have a poor idea as to the value of p.  We shall construct a simple survival function of 

this form that satisfies all the conditions. The survival function 

w p<

0 1p = )1 iw−

( ) ( )g iG i B=  with 1B <   

,  increasing, , and ( )( )0 0g = ( )g i ( )g ∞ = ∞ ( )1 i g ip B− ≤  satisfies all the requirements. 

Taking logarithms we obtain 

(35) ( ) ( ) ( )ln 1 / lni p B g− ≥ i .  

The coefficient on i is positive so  

(36) ( ) 0 1g i iα α= < <   

eventually satisfies (35). Showing that the random variable has a finite mean requires a 

little more finesse. The ratio and root tests for convergence are indeterminate, as were 

many of the usual comparison tests.  Ermakoff's test worked.  Ermakoff's test for 

convergence21 says if  and ( ) 0G i ≥
( )
( )

lim 1
k k

k

e G e
q

G k→∞
= <  then  converges. Its 

application to the sum of the survivor function shows the expectation exists for all 0<B<1 

and 0<α<1.  

( )
0k

G k
∞

=
∑

4.3.    Generating Stopping Times  

Generating random truncation points for a distribution with survival function

  is straightforward.  The distribution function is ( ) 0iG i B
α

α= < 1<

( ) 1 iF i B
α

= − .  So by a standard argument: Let U~U(0,1), set ' 1 IU U B
α

= − = where U' 

is uniform since U is.  Solving gives ( ) ( )ln ' / lnI U Bα⎢ ⎥= ⎣ ⎦  where indicates the 

largest integer smaller than x.  In simulations, 

x⎢ ⎥⎣ ⎦

.3α =  B=.8 has worked well.  It is also the 

case that the larger is the implied expected value of I, the smaller the variance.  

 

4.4.     Expansion Points and Circle of Convergence 

                                                 
21 See Knopp (1990). 
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The expansion point, 0p , for the logarithm, is also arbitrary, but is important 

because the circle of convergence is { }0| 0 2p p p≤ ≤ .  For completely unknown 

probabilities, this means taking .  In practice, I have found .51 works well, while 

anything less sometimes causes numeric problems, and anything greater increases the 

variance.   

0 .5p >

5. CONCLUSION 

We have developed a general method for obtaining unbiased estimators of 

analytic functions of expectations when the expectations must be simulated.  We then 

showed that three estimates of the gradient or score of these unbiased functions were also 

unbiased and that if the underlying simulants that are stochastically equicontinuous, the 

unbiased functions and scores are stochastically equicontinuous as well. We then showed 

how to incorporate these into the framework of HM to obtain consistent and 

asymptotically normal SML estimates based on the unbiased score estimates.  Finally, we 

detailed some computational methods needed to implement the methods. 
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APPENDIX A: 

The following lemmae probably do not need proofs since they no doubt appear elsewhere 

or are obvious after a little thought.  They are included for completeness. 

 

LEMMA 1:  Let ( ,t t ts s )ω ϑ=  be independent and identically distributed, and 

stochastically equicontinuous with ( )2
tE s < ∞  then

1
/T

tt
s T

=∑  is stochastically 

equicontinuous. 

 

PROOF:  

Let ( , 't t ts s )ω ϑ′ = .  By the independent and identically distributed assumption and 

Chebychev's inequality we have 

( ) ( ) ( ) ( )22 2
1 11 1

Pr / / / /T T
t t t t t tt t

s s T V s s T V s s E s s 2ε ε ε
= =

⎡ ⎤′ ′ ′− > ≤ − = − ≤ −⎣ ⎦∑ ∑ ε′ . 

By stochastic equicontinuity choose any *η and *ε  there is a δ such that 

| ' tϑ ϑ ϑ δ∀ − <  1 1Pr * *s s ε η′− > ≤⎡ ⎤⎣ ⎦ .  Let t tz s s′= − and f be its density 

then ( ) ( )2 2

0t tE s s z f z dz M
∞

′− = ≤∫ .  Let ( ); *I z ε be the indicator for the set 

{ }|z z *ε≤  then 

( ) ( ) ( ) ( )( ) ( )

[ ] ( ) [ ]( )
[ ]( )

2 2

0 0 0

2 2

2

2

; * 1 ; *

* Pr * | * 1 Pr *

* 1 Pr *

* *

z f z dz I z z f z dz I z z f z dz

z E z z z

M z

M

ε ε

ε ε ε ε

ε ε

ε η

∞ ∞ ∞
= + −

≤ ≤ + > − ≤

= + − ≤

≤ +

∫ ∫ ∫ 2

 

where the conditional second moment exists and is bounded by the same assumption on 

the unconditional moment. So ( )2
1

Pr / * * /T
t tt

s s T M 2ε ε η
=

⎡ ⎤′− > ≤ +⎣ ⎦∑ ε . Now choose 

any *η and *ε  so that ( )2* * /M 2η ε η= + ε and with the δ  determined above. 

Q.E.D. 

 

LEMMA 2:    Let { }1, , Ix x  be independent and identically distributed random 
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variables and let I be a nonnegative random integer with ( )E I < ∞ then 

( ) 1Pr max Prii I
x E I xε ε

≤
⎡ ⎤> ≤ >⎡ ⎤⎣ ⎦⎣ ⎦ . 

PROOF: 

[ ]

( ) [ ]

( ) [ ]

( )( ) [ ]

[ ]
( )

0

0

10

10

10

1

Pr max Pr max | Pr

1 Pr max | Pr

1 Pr Pr

1 1 Pr Pr

Pr Pr

Pr

i iii I i I

ii i I

I

i

I

i

i

x x I I

x I I

x I

x I

I x I

E I x

ε ε

ε

ε

ε

ε

ε

∞

=≤ ≤

∞

= ≤

∞

=

∞

=

∞

=

⎡ ⎤ ⎡ ⎤> = >⎣ ⎦ ⎣ ⎦

⎡ ⎤= − ≤⎣ ⎦

= − ≤⎡ ⎤⎣ ⎦

= − − >⎡ ⎤⎣ ⎦

≤ >⎡ ⎤⎣ ⎦
= >⎡ ⎤⎣ ⎦

∑

∑

∑

∑

∑

 

Q.E.D. 

 

 

LEMMA 3:   Let and  converge absolutely then ( )0i
v I∞

=∑ ( ) ( )0 0

I

I i
u i v I∞

= =∑ ∑
( ) ( ) ( ) ( )0 0 0 1

I

I i i I i
u i v I u i v I∞ ∞ ∞

= = = = +
=∑ ∑ ∑ ∑ . 

PROOF: 

Let ( ), 1 if
0 otherwise

Y i I i I= ≤

=

 

Then 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 1

, ,I

I i I i i I i I i
u i v I Y i I u i v I Y i I u i v I u i v I∞ ∞ ∞ ∞ ∞ ∞ ∞

= = = = = = = = +
= = =∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

where the exchange in sum order follows from absolute convergence of the sums. 

Q.E.D. 

LEMMA 4: Let  and 
1

I
ii

S s
=

= ∏ '
1

' I
ii

S s
=

= ∏ then 

( )' '
' ' ' '' 1 ' 1 ' 1 0 ' ' '

' i i i
i i i i ji i i j i i j

S S s s s s s s
= = = ≤ < <

− = − = −∏ ∏ ∑ ∏ ∏ '
'ji≤
 

PROOF: 

By induction: This is true for i=2, since 
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( ) (
' ' ' ' ' '

1 2 1 2 1 2 1 2 1 2 1 2

' '
1 1 2 1 2 2

s s s s s s s s s s s s

s s s s s s

− = − + −

= − + − )'

' '
i

 

Assume it is true for i-1, so for i it is also true, since 

( ) ( )
( ) ( )( )

( )

' ' ' ' ' '
1 1 1 1 1 1 1 1

' ' ' '
1 1 1 1 1 1

1 ' 1 1' '
1 1 ' ' '' 1 1 ' ' 1

' 1' '
' ' '' 1 1 ' ' 1

i i i i i i i i

i i i i i i

i i i
i i i i i j ji j j i

i i i
i i j ji j j i

s s s s s s s s s s s s s s

s s s s s s s s s

s s s s s s s s s

s s s s

− −

− − −

− − −

− = = = +

−

= = = +

− = − + −

= − + −

= − + −

= −

∑ ∏ ∏
∑ ∏ ∏

 

Q.E.D.. 

LEMMA 5:    Let ( ) ( ) ( )( ) (
11

, , , , / ,
ii

i r rr r
U s I s Z s Z C I iϑ ϑ ϑ

< <
= ∑ )  then 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
1 111

1

, , , , ' , , , ' , ' / ,

2 max , , '

i ii
i i r r r rr r I

i
i ii I

U s I U s I s Z s Z s Z s Z C I i

i R s Z s Z

ϑ ϑ ϑ ϑ ϑ ϑ

ε ϑ ϑ

≤ < < ≤

−

≤

− = −

≤ − −

∑

 
PROOF: By Lemma 4 

( ) ( ) ( ) ( ) ( )

( )

( )

1 1 ' '

' ' '

' '

' 1' '
' 1 1 ' ' 1

' 1' '
' 1 1 ' ' 1

1'
' 1

1'

, , , ' , '

2

max 2

i i i i j

i i j j

i i

i i i
r r r r r r ri j j

i i i
r r r ri j j i

i i
r ri

i
i ii I

s Z s Z s Z s Z s s s s

s s s s

s s R

i s s R

ϑ ϑ ϑ ϑ

ε

ε

−

= = =

−

= = =

−

=

−

≤

− = −

≤ −

≤ − −

≤ − −

∑ ∏ ∏
∑ ∏ ∏
∑

'jri +

+

)

 

for each i-tuple (  there are 1, , ir r ( ),C I i  such i-tuples. 

Q.E.D.. 

 

 

 

 

APPENDIX B:  

In this appendix we present an exact variance calculation.  ( ),z I  is a random sum of U-

statistics of different orders. Using elements of the theory of U statistics and the law of 

iterated expectations as it applies to variances, we can calculate the exact variance of 
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( , )z I .  Since the simulants are bounded, the variances necessarily exist.  Let  

be independent and identically distributed conditional on I, and let  be the U-statistic 

estimator for based on the kernel 

1, , Is s

iU

( )1
iim E s= 1 2 is s s⋅  conditional on I then from 

Randles and Wolfe (1979) or Lehmann(1998). 

Let then ( ) ( ) (, , , , ,A I i j c C i c C I j i c= − )−

)(B.1)                                                                    ( ) ( ) (,

1

, | , , , / ,
i

i j
i j c

c

Cov U U I A I i j c C I jζ
=

= ∑

where i j     , , I< ≤ ( )1m E s= ( )2
2 1E sν =  and 

(B.2)  ( ) ( ) ( ),
1 1 1 1 2

i j i j c i j c i j
c c c i c i i j cE s s s s s s s s m m mζ ν+ + − +

+ + + −
⎡ ⎤= −⎣ ⎦ = −                        

or 

(B.3)                       ( ) ( ) ( ) ( )

( ) ( )

2
1

2

1

, | , , , / ,

, , , 1 / ,

i
c i j c i j

i j
c

ci
i j

c

Cov U U I A I i j c m m C I j

A I i j c m C I j
m

ν

ν

+ − +

=

+

=

= −

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

 

(B.4) ( ) ( ) ( )

( ) ( )

2 2 2

1 1

1
2

1 1

| , , , 1 /

2 , , , 1 /

cjN
i

j
j c

cj i
i j

i j
i c

V I A I j j c m C I j
m

A I i j c m C I j
m

νλ

νλ λ

= =

−
+

= =

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞+ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑

,

,

  

 

From the well known identity ( ) ( )( ) ( )( )|V E V I V E I= + |  we obtain the variance 

of . 

(B.5) ( )( ) ( ) ( )

( ) ( )

2 2 2

1 1 1

1
2

1 1

| , , , 1

2 , , , 1 /
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i c
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,
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m
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∞
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−
+

= =

⎡ ⎛ ⎞⎛ ⎞= −⎢ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎝ ⎠⎣
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= ∑                                                       

 39 



 

(B.7) ( )( ) ( )
2

2

1 0

|
I

i
i

I i

E E I m Iλ
∞

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ ∑ Pr                                                    

 

(B.8) ( ) ( )
2

2

1 0

Pr
I

i
i

I i

E m Iλ
∞

= =

⎛ ⎞⎛ ⎞= ⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ⎟                                                   

 

(B.9)  ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2 2

1 1 1

1
2

1 1

22

1 0 1 0

, , , 1 Pr

2 , , , 1 Pr /

Pr Pr

cjI
i

j
I j c

cj i
i j

i j
i c

I I
i i

i i
I i I i

V A I j j c m I
m

,A I i j c m I C I j
m

m I m I

νλ

νλ λ

λ λ

∞

= = =

−
+

= =

∞ ∞

= = = =

⎡ ⎛ ⎞⎛ ⎞= −⎢ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎝ ⎠⎣
⎤⎛ ⎞⎛ ⎞+ − ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎥⎝ ⎠ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞+ − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

                 

 40 



APPENDIX C: 

The following detail the gradient formulae.  As before, let Ζ1, . . . , ΖΙ be independent 

and identically distributed Gaussian(µ,Ω), then from Ruud (2000) (pp. 928-930) 

(C.1) ( )( ) ( ) ( )( ) ( ) ( )1

1

1ln ; , ln 2 ln det
2 2

I
T

i i
i

Ih Z I Z Zµ π µ −

=

⎛ ⎞⎛ ⎞Ω = − − Ω + − Ω −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ µ        

(C.2) ( ) [ ]11 12 1 22 23 2, , , , , , , , , T
I Ivechω ω ω ω ω ω ω= Ω = IIω                                                                 
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I T
i ii

W Z Zµ µ
=

= − −∑
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( )( ) ( )1
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h Z
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µ
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∂ Ω
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∂ ∑  
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( )( ) ( )1 1ln ; , 1

2
h Z

vech W
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= − Ω − Ω Ω
∂

1
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Alternatively, let iZ Kµ ε= + where K is upper triangular so 

0 otherwise.
ij ijK k j i p= ≤ ≤

=
 

and consider the gradient of  for a differentiable function g ( ig WZ )

pp

p

if   and  1, ,
T

pW W W⎡ ⎤= ⎣ ⎦ ( )( ) ( )( )11 1 22 2 1 2 1 1, , , , , , , , , ,
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p p p p p pk k k k k k kϑ µ − − − −
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